

Common Platform 1

Enumeration: Dictionary 2

Specification Version 2.3 3

(DRAFT) 4

 5

Paul Cichonski 6

David Waltermire 7

Karen Scarfone8

NIST Interagency Report 7697

(Second Public Draft)

 9

10 11
Common Platform Enumeration:
Dictionary Specification Version 2.3
(DRAFT)

Paul Cichonski
David Waltermire
Karen Scarfone

C O M P U T E R S E C U R I T Y

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8930

June 2011

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Director

NIST Interagency Report 7697

(Second Public Draft)

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 ii

Reports on Computer Systems Technology 12

 13

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 14

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s 15

measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 16

concept implementations, and technical analysis to advance the development and productive use of 17

information technology. ITL’s responsibilities include the development of technical, physical, 18

administrative, and management standards and guidelines for the cost-effective security and privacy of 19

sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s 20

research, guidance, and outreach efforts in computer security and its collaborative activities with industry, 21

government, and academic organizations. 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

44

Certain commercial entities, equipment, or materials may be identified in this

document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7697 (DRAFT)

39 pages (June 2011)

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 iii

Acknowledgments 45

The authors, Paul Cichonski and David Waltermire of the National Institute of Standards and Technology 46

(NIST), and Karen Scarfone of Scarfone Cybersecurity wish to thank their colleagues who reviewed 47

drafts of this document and contributed to its technical content. The authors would like to acknowledge 48

Harold Booth of NIST, Christopher McCormick of Booz Allen Hamilton, Seth Hanford of Cisco 49

Systems, Inc., Tim Keanini of nCircle, Kent Landfield of McAfee, Inc., Brant A. Cheikes and Mary 50

Parmelee of the MITRE Corporation, Jim Ronayne of Varen Technologies, Shane Shaffer of G2, Inc., 51

Joseph L. Wolfkiel of the US Department of Defense, and Adam Halbardier of Booz Allen Hamilton for 52

their insights and support throughout the development of the document. 53

Abstract 54

This report defines the Common Platform Enumeration (CPE) Dictionary version 2.3 specification. The 55

CPE Dictionary Specification is a part of a stack of CPE specifications that support a variety of use cases 56

relating to IT product description and naming. An individual CPE dictionary is a repository of IT product 57

names, with each name in the repository identifying a unique class of IT product in the world. This 58

specification defines the semantics of the CPE Dictionary data model and the rules associated with CPE 59

dictionary creation and management. This report also defines and explains the requirements that IT 60

products and services, including CPE dictionaries, must meet for conformance with the CPE Dictionary 61

version 2.3 specification. 62

Note to Reviewers 63

The authors of this report are particularly interested in reviewers’ thoughts and suggestions related to CPE 64

dictionary use cases. The introduction to Section 1 discusses common use cases; however, the list there is 65

not meant to be exclusive, and reviewers are encouraged to submit their ideas for additional ways in 66

which CPE dictionaries could be used. 67

Trademark Information 68

CPE is a trademark of The MITRE Corporation. 69

All other registered trademarks or trademarks belong to their respective organizations. 70

71

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 iv

Table of Contents 72

1. Introduction .. 1 73

1.1 Purpose and Scope ... 2 74

1.2 Audience ... 2 75

1.3 Document Structure .. 2 76

1.4 Document Conventions ... 2 77

2. Definitions and Abbreviations ... 4 78

2.1 Definitions ... 4 79

2.2 Abbreviations .. 5 80

3. Relationship to Existing Specifications and Standards .. 6 81

3.1 Other CPE Version 2.3 Specifications ... 6 82

3.2 CPE Version 2.2 .. 6 83

4. Conformance .. 7 84

4.1 Dictionary Use Conformance ... 7 85

4.2 Dictionary Creation and Maintenance Conformance .. 7 86
4.2.1 Official CPE Dictionary .. 8 87

4.2.2 Extended CPE Dictionaries ... 8 88

5. CPE Dictionary Data Model.. 9 89

5.1 The cpe-list Element .. 9 90

5.2 The generator Element .. 10 91

5.3 The cpe-item Element ... 10 92

5.4 The cpe23-item Element ... 11 93

5.5 The provenance-record Element ... 12 94

5.6 The deprecation Element .. 13 95

5.7 Extension Points .. 14 96

6. Dictionary Creation and Maintenance ..15 97

6.1 Acceptance Criteria ... 15 98
6.1.1 Logical Values and Special Characters ..15 99

6.1.2 CPE Name Completeness ...16 100

6.1.3 CPE Name Uniqueness ...16 101

6.2 CPE Dictionary Deprecation Process .. 17 102

6.3 CPE Dictionary Provenance Data .. 19 103

6.4 CPE Dictionary Management Documents .. 19 104
6.4.1 Dictionary Content Management and Decisions Document19 105

6.4.2 Dictionary Process Management Document ...20 106

7. Dictionary Use ...21 107

7.1 Identifier Lookup .. 21 108

7.2 Dictionary Searching ... 21 109

7.3 Use of Deprecated Identifier Names .. 22 110

8. CPE Dictionary Operations and Pseudocode ...24 111

8.1 Operations on a CPE Dictionary .. 24 112
8.1.1 Function get_cpe_items(d) ...24 113

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 v

8.1.2 Function get_cpe_item_WFN(item) ..24 114

8.1.3 Function get(w,a) ...24 115

8.1.4 Function is_deprecated(item) ...24 116

8.1.5 Function getItem(list, index) ...24 117

8.1.6 Function strlen(s) ...24 118

8.1.7 Function substr(s,b,e) ..25 119

8.2 Acceptance Criteria Pseudocode .. 25 120

8.3 Dictionary Use Pseudocode .. 27 121

Appendix A— References ..32 122

Appendix B— Change Log ...33 123

 124

List of Figures 125

Figure 8-1: accept-name function ..26 126

Figure 8-2: contains-restricted-characters function ..26 127

Figure 8-3: contains-required-attributes function ...27 128

Figure 8-4: matches-more-complete-in-dictionary function ..27 129

Figure 8-5: dictionary-search function ...29 130

Figure 8-6: findSupersetMatches function ...29 131

Figure 8-7: findSubsetMatches function ..30 132

Figure 8-8: findExactMatch function ..31 133

 134

List of Tables 135

Table 8-1: Description of dictionary-search function ..28 136

Table 8-2: Description of findSupersetMatches function ..29 137

Table 8-3: Description of findSubsetMatches function ...30 138

Table 8-4: Description of findExactMatch function ...30 139

 140

 141

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 1

1. Introduction 142

Common Platform Enumeration (CPE) is a standardized method of describing and identifying classes of 143

applications, operating systems, and hardware devices present in an enterprise’s computing assets. CPE 144

can be used as a source of information for enforcing and verifying IT management policies relating to 145

these assets, such as vulnerability, configuration, and remediation policies. IT management tools can 146

collect information about installed products, identify products using their CPE names, and use this 147

standardized information to help make fully or partially automated decisions regarding the assets. 148

CPE consists of several modular specifications. Combinations of the specifications work together in 149

layers to perform various functions. One of these specifications, CPE Dictionary, defines a standardized 150

method for creating and managing CPE dictionaries. A dictionary is a repository of CPE names and 151

metadata associated with the names. Each CPE name in the dictionary identifies a single class of IT 152

product in the world. The word ―class‖ here signifies that the object identified is not a physical 153

instantiation of a product on a system, but rather the abstract model of that product. Although 154

organizations may use a CPE name to represent either a single product class or a set of multiple product 155

classes, a CPE dictionary stores only bound forms of well-formed CPE names (WFNs) that identify a 156

single product class, not a set of product classes. These single product-class WFNs in bound form are 157

referred to as identifier names. An example of a WFN and its bound forms is shown below. 158

 159

WFN: 160
wfn:[part="o",vendor="microsoft",product="windows_vista",version="6\.0", 161
update="sp1",edition=NA,language=NA,sw_edition="home_premium", 162
target_sw=NA,target_hw="x64",other=NA] 163
 164

WFN bound to a URI: 165
cpe:/o:microsoft:windows_vista:6.0:sp1:~-~home_premium~-~x64~- 166
 167

WFN bound to a formatted string: 168
cpe:2.3:o:microsoft:windows_vista:6.0:sp1:-:-:home_premium:-:x64:- 169

NIST hosts the Official CPE Dictionary
1
, which is the authoritative repository of identifier names. The 170

goal of the CPE stack of specifications is to provide entities within the IT industry a standardized way to 171

describe and identify IT products, and the Official CPE Dictionary provides the mechanism to support 172

this interoperability for product identifiers. The authoritative nature of the Official CPE Dictionary allows 173

organizations to search for and find identifier names in one centralized place without worrying about 174

dealing with conflicts between federated dictionaries. 175

Organizations may create their own extended CPE dictionaries, which are used to store identifier names 176

not present in the Official CPE Dictionary. There are several reasons why extended dictionaries are 177

needed. For example, an organization may have to create identifier names for proprietary products that 178

are only useful within that organization, such as internally developed software not found outside the 179

organization. Another possible reason is that an IT company may want to use identifiers for their 180

unreleased products that do not yet have official identifier names; once the identifier names have 181

stabilized, the company would submit them to the Official CPE Dictionary. Finally, an organization may 182

discover new products in use that do not yet have official identifiers; the organization could create 183

identifiers, add them to its own extended dictionary, submit them for inclusion in the Official CPE 184

Dictionary, and use them internally while waiting for their addition to the Official CPE Dictionary. 185

1 The Official CPE Dictionary is available at http://nvd.nist.gov/cpe.cfm.

http://nvd.nist.gov/cpe.cfm

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 2

1.1 Purpose and Scope 186

This document defines the specification for CPE Dictionary version 2.3. This includes formally defining 187

the concept of a CPE dictionary, the rules and policies relating to dictionary instantiation and 188

management, and the data model that represents all dictionary concepts and relationships. This document 189

also establishes the concept of an Official CPE Dictionary, as well as the process for how organizations 190

can extend the Official CPE Dictionary using extended CPE dictionaries. 191

 192

This report only applies to version 2.3 of CPE Dictionary. All other versions are out of the scope of this 193

report, as are all CPE specifications other than CPE Dictionary. Operational guidelines, such as suggested 194

processes for submitting new entries to a dictionary, are also out of the scope of this report. 195

1.2 Audience 196

This report is intended for two main audiences: the creators and maintainers of CPE dictionaries, and IT 197

management tool developers. Readers of this report should already be familiar with CPE naming and 198

name matching concepts and conventions, as specified in [CPE23-N] and [CPE23-M]. 199

1.3 Document Structure 200

The remainder of this report is organized into the following major sections and appendices: 201

 Section 2 defines selected terms and abbreviations used within this specification. 202

 Section 3 provides an overview of related specifications or standards. 203

 Section 4 defines the conformance rules for this specification. 204

 Section 5 defines the CPE dictionary data model. 205

 Section 6 provides information and requirements related to CPE dictionary creation and 206

maintenance. 207

 Section 7 defines operations for using a CPE dictionary, such as looking up a particular identifier 208

name or searching for dictionary entries that belong to a particular set of products. 209

 Section 8 provides pseudocode that implements concepts defined in other sections of the 210

specification. 211

 Appendix A lists normative and informative references. 212

 Appendix B provides a change log that documents significant changes to major drafts of the 213

specification. 214

1.4 Document Conventions 215

The key words ―MUST‖, ―MUST NOT‖, ―REQUIRED‖, ―SHALL‖, ―SHALL NOT‖, ―SHOULD‖, 216

―SHOULD NOT‖, ―RECOMMENDED‖, ―MAY‖, and ―OPTIONAL‖ in this document are to be 217

interpreted as described in Request for Comment (RFC) 2119.
2
 218

Text intended to represent computing system input, output, or algorithmic processing is presented in 219

fixed-width Courier font. 220

Normative references are listed in Appendix A. These references use the citation convention of a square 221

bracket notation containing an abbreviation of the overall reference citation, followed by a colon and 222

2 RFC 2119, ―Key words for use in RFCs to Indicate Requirement Levels‖, is available at http://www.ietf.org/rfc/rfc2119.txt.

http://www.ietf.org/rfc/rfc2119.txt

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 3

subsection citation where applicable (e.g., [CPE23-N:7.2] is a citation for the CPE 2.3 Naming 223

specification, Section 7.2). 224

This specification adheres to all rules and conventions defined lower in the CPE stack of specifications. 225

The CPE Naming Specification defines the concept of a Well-Formed CPE Name (WFN) that is a logical 226

representation of a CPE name [CPE23-N:5.1]. Wherever possible, this specification uses WFN 227

representation of CPE names to limit the dependency on any particular CPE name binding. However, 228

readers should keep in mind that CPE dictionaries store bound CPE names, not WFNs. 229

This document uses an abstract pseudocode programming language to specify expected computational 230

behavior. Pseudocode is intended to be straightforwardly readable and translatable into actual 231

programming language statements. Note, however, that pseudocode specifications are not necessarily 232

intended to illustrate efficient or optimized programming code; rather, their purpose is to clearly define 233

the desired behavior, leaving it to implementers to choose the best language-specific design which 234

respects that behavior. In some cases, particularly where standardized implementations exist for a given 235

pseudocode function, we describe the function's behavior in prose. 236

When reading pseudocode the following should be kept in mind: 237

 All pseudocode functions are pass by value, meaning that any changes applied to the supplied 238

arguments within the scope of the function do not affect the values of the variables in the caller’s 239

scope. 240

 In a few cases, the pseudocode functions reference (more or less) standard library functions, 241

particularly to support string handling. In most cases semantically equivalent functions can be 242

found in the GNU C library, cf. 243

http://www.gnu.org/software/libc/manual/html_node/index.html#toc_String-and-Array-Utilities. 244

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 4

2. Definitions and Abbreviations 245

This section defines selected terms and abbreviations used within the document. This section builds on 246

the terms defined in the CPE Naming specification [CPE23-N] and the CPE Name Matching specification 247

[CPE23-M], and does not repeat them here. 248

2.1 Definitions 249

CPE Dictionary: A repository of identifier CPE names (WFNs in bound form) and associated metadata. 250

Deprecated Identifier Name: An identifier name that is no longer valid because it has either been 251

replaced by a new identifier name or set of identifier names or was created erroneously. 252

Dictionary Contributor: An organization or person that submits new identifier CPE names to a 253

dictionary for inclusion. 254

Dictionary Creator: An organization that instantiates a CPE dictionary that conforms to the guidance 255

within this specification. A dictionary creator is the organization that is ultimately responsible for the 256

dictionary. 257

Dictionary Maintainer: An organization that manages a CPE dictionary and all processes relating to that 258

CPE dictionary. In the majority of cases, the organization that serves as the dictionary creator for a 259

specific CPE dictionary will also serve as the dictionary maintainer. Otherwise, generally the dictionary 260

maintainer is supporting the dictionary on behalf of the dictionary creator. 261

Dictionary Management Documents: A set of documentation that captures the rules and processes 262

specific to a CPE dictionary. 263

Dictionary Search: The process of determining which identifier names within a CPE dictionary are 264

members of a source name that represents a set of products. The possible outcomes of a dictionary search 265

are Superset Match, Subset Match, and No Match. 266

Dictionary User: An organization, individual, product, or service that consumes a CPE dictionary for any 267

purpose. 268

Extended CPE Dictionary: A dictionary that an organization may create to house identifier names not 269

found in the Official CPE Dictionary. 270

 271

Identifier Lookup: The process of determining if a single identifier name exists in a CPE dictionary. The 272

possible outcomes of an identifier lookup are Match and No Match. 273

Identifier CPE Name: A bound representation of a CPE WFN that uniquely identifies a single product 274

class. Also referred to as an ―identifier name‖. 275

Known Data: A category of information that may be present within an attribute of a CPE name. Known 276

data represents any meaningful value about a product (e.g., ―sp1‖, ―2.3.4‖, ―pro‖, NA), but does not 277

include the logical value ANY. 278

 279

Official CPE Dictionary: The authoritative repository of identifier names, which is hosted by NIST. 280

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 5

Official Identifier CPE Name: Any bound representation of a CPE WFN that uniquely identifies a 281

single product class and is contained within the Official CPE Dictionary. 282

2.2 Abbreviations 283

CPE Common Platform Enumeration 284

IR Interagency Report 285

IT Information Technology 286

ITL Information Technology Laboratory 287

NIST National Institute of Standards and Technology 288

RFC Request for Comment 289

URI Uniform Resource Identifier 290

WFN Well-Formed CPE Name 291

XML eXtensible Markup Language 292

 293

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 6

3. Relationship to Existing Specifications and Standards 294

This section explains the relationships between this specification and related specifications or standards. 295

3.1 Other CPE Version 2.3 Specifications 296

CPE version 2.3 was constructed using a modular, stack-based approach, with each major component 297

defined in a separate specification. Functional capabilities are built by layering these modular 298

specifications. This architecture opens opportunities for innovation, as novel capabilities can be defined 299

by combining only the needed specifications, and the impacts of change can be better compartmentalized 300

and managed. 301

 302

The CPE Dictionary version 2.3 specification builds upon the CPE Naming version 2.3 [CPE23-N] and 303

CPE Name Matching version 2.3 [CPE23-M] specifications to define the concept of a CPE dictionary. 304

3.2 CPE Version 2.2 305

The CPE version 2.3 specifications, including this specification, collectively replace [CPE22]. CPE 306

version 2.3 is intended to provide all the capabilities made available by [CPE22] while adding new 307

features suggested by the CPE user community. 308

 309

The primary differences between CPE Dictionary versions 2.2 and 2.3 include: 310

 Updated deprecation logic that includes one-to-many CPE deprecation 311

 Updated change history and provenance data requirements 312

 Built-in one-to-one mapping between CPE version 2.2 and version 2.3 names; the version 2.3 313

name is embedded in the version 2.2 name so that the instance document will validate against the 314

version 2.2 schema. 315

 316

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 7

4. Conformance 317

Products and organizations may want to claim conformance with this specification for a variety of 318

reasons. For example, a product may want to assert that it uses official identifier names properly. 319

Organizations may want to claim conformance if they are creating and/or maintaining CPE dictionaries. 320

This section provides the high-level requirements that a product or organization must meet if they are 321

seeking conformance with this specification. The majority of the requirements listed in this section 322

reference other sections in this document that fully define the high-level requirement. 323

4.1 Dictionary Use Conformance 324

This section contains the set of requirements for IT products asserting conformance with this specification 325

for dictionary use. Products may claim conformance with this specification to show that the product uses 326

identifier names properly. All products claiming conformance with this specification MUST adhere to the 327

following requirements: 328

1. Products using CPE names as identifiers MUST only use identifier names that meet the criteria 329

defined in Section 6.1. Products using identifier names SHOULD only use official identifier 330

names, which are located in the Official CPE Dictionary. If an official identifier name is not 331

available, the product MUST use an identifier name contained within an extended CPE dictionary 332

to which it has access. 333

2. Products using a CPE dictionary MUST adhere to the requirements in Section 7.1 and 7.2 for 334

identifier lookups and dictionary searches. 335

3. When a product consumes or outputs an identifier name, that product MUST first determine if the 336

identifier name is deprecated and act appropriately if it is, in compliance with the process defined 337

in Section 7.3. This requirement MAY be ignored if the product is intending to communicate 338

information about deprecated identifier names. 339

4.2 Dictionary Creation and Maintenance Conformance 340

Organizations creating or maintaining CPE dictionaries may claim conformance with this specification if 341

the dictionary meets the requirements in this section. This section first provides the generic requirements 342

for all dictionaries, then provides requirements specific to the dictionary type (i.e. Official CPE 343

Dictionary or extended CPE dictionary). 344

1. The data within a CPE dictionary MUST adhere to the data model defined in Section 5; this 345

includes all entries in the dictionary containing the mandatory elements defined in Section 5. 346

2. Organizations creating/maintaining a CPE dictionary MAY extend the CPE dictionary data model 347

defined in Section 5. These organizations MUST use only the extension points defined in Section 348

5.7 when extending the CPE dictionary data model. 349

3. All entries in a CPE dictionary MUST adhere to the minimum set of identifier name acceptance 350

criteria defined in Section 6.1. 351

4. A CPE dictionary MUST adhere to the identifier name deprecation process defined in Section 352

6.2. 353

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 8

5. A CPE dictionary MUST capture the identifier name provenance data defined in Section 6.3. 354

The following subsections provide additional requirements specific to each dictionary type. 355

4.2.1 Official CPE Dictionary 356

Additional requirements for the Official CPE Dictionary are: 357

1. The Official CPE Dictionary SHOULD NOT further restrict the acceptance criteria defined in 358

Section 6.1 because doing so would require all extended CPE dictionaries to implement the same 359

restrictions. 360

2. The Official CPE Dictionary MUST house its own set of management documents as specified in 361

Section 6.4. 362

4.2.2 Extended CPE Dictionaries 363

Additional requirements for extended CPE dictionaries are: 364

1. Organizations MAY use extended CPE dictionaries to store identifier names for proprietary 365

products. 366

2. Organizations MAY use extended CPE dictionaries to store identifier names not yet found in the 367

Official CPE Dictionary, but these organizations SHOULD submit these new identifier names to 368

the Official CPE Dictionary as official identifier names. 369

3. An extended CPE dictionary SHOULD house its own set of management documents as specified 370

in Section 6.4. If a dictionary does not have its own documents, the dictionary creator or 371

maintainer SHOULD reference the Official CPE Dictionary Management Documents as 372

applicable to the extended dictionary. 373

4. An extended CPE dictionary MUST adhere to all acceptance criteria restrictions implemented in 374

the Official CPE Dictionary. An extended CPE dictionary MAY further restrict the Official CPE 375

Dictionary acceptance criteria, but MUST not conflict with them. 376

5. An extended CPE dictionary SHOULD NOT contain identifier names that conflict with the 377

Official CPE Dictionary. If an extended dictionary does contain conflicting names, the extended 378

dictionary’s maintainers SHOULD try to resolve the conflict with the Official Dictionary. 379

6. An extended CPE dictionary MUST NOT include any names that are not unique with respect to 380

itself or to the Official CPE Dictionary. Section 6.1.3 defines CPE name uniqueness. 381

 382

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 9

5. CPE Dictionary Data Model 383

This section defines the data model that all CPE dictionaries MUST implement. The data model does not 384

prescribe a specific binding or implementation; it merely describes the data that is required to support the 385

technical use cases. Any CPE dictionary binding MUST implement all data model elements and 386

properties defined in this section. Additionally, any CPE dictionary binding MAY extend this data model, 387

but extensions MUST only occur at the valid extension points defined in Section 5.7. 388

 389

A CPE dictionary is a collection of identifier names and metadata associated with these identifiers. To 390

support this, the CPE Dictionary data model revolves around one core element called cpe-item that holds 391

all the information relating to a single identifier name. The cpe-item element has evolved out of the CPE 392

Dictionary 2.2 XML Schema to support backwards compatibility. The cpe-item element contains a cpe23-393

item element that captures all CPE 2.3 specific data, including provenance data and an upgraded 394

deprecation system. 395

This data model makes special accommodations to ensure that existing version 2.2 CPE dictionaries are 396

forward compatible with the CPE Dictionary 2.3 XML schemas. Also, any XML schema based bindings 397

generated from this data model can produce instance data that validates against the CPE Dictionary 2.2 398

XML schema, if the cpe23-item element is used as the ―any‖ element in the CPE Dictionary 2.2 XML 399

schema and the title element is always specified for each cpe-item element. To support this, the CPE 400

dictionary’s XML specification is split into two schemas: the main schema corresponds to the CPE 401

Dictionary 2.2 XML schema (with the exception of making the title element optional instead of 402

mandatory), and the schema extension contains the CPE Dictionary 2.3 specific elements and attributes. 403

 404

The tables below define the elements of the data model and their properties. Several of the elements allow 405

organizations to supply additional information that is not covered by these properties. However, such 406

information is not part of the official CPE Dictionary data model, and there are no requirements for 407

dictionary users to access or process this information. 408

In the tables below, types prefixed with ―cpe_dict:‖ are from the CPE Dictionary 2.3 XML schema, 409

―cpe_dict_ext:‖ prefixes indicate types from the CPE Dictionary 2.3 XML schema extension, and 410

―cpe_name‖ prefixes indicate types from the CPE Naming 2.3 XML schema. These schemas, which are 411

the authoritative XML binding definitions, can be found at http://scap.nist.gov/schema/cpe/2.3/cpe-412

dictionary_2.3.xsd, http://scap.nist.gov/schema/cpe/2.3/cpe-dictionary-extension_2.3.xsd, and 413

http://scap.nist.gov/schema/cpe/2.3/cpe-naming_2.3.xsd, respectively. 414

5.1 The cpe-list Element 415

The cpe-list element contains all of the dictionary entries and dictionary metadata. The table below 416

describes the cpe-list element’s properties. 417

 418

Property Type Count Description

generator

(element)

cpe_dict:GeneratorType 0-1 Information related to the generation of the

document, including the dictionary schema version,

the time of the dictionary’s generation, and the name

and version of the application used to generate it.

cpe-item

(element)

cpe_dict:ItemType 1-n A container for a single dictionary entry (identifier

name) and its metadata.

http://scap.nist.gov/schema/cpe/2.3/cpe-dictionary_2.3.xsd
http://scap.nist.gov/schema/cpe/2.3/cpe-dictionary_2.3.xsd
http://scap.nist.gov/schema/cpe/2.3/cpe-dictionary-extension_2.3.xsd
http://scap.nist.gov/schema/cpe/2.3/cpe-naming_2.3.xsd

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 10

Property Type Count Description

 xsd:any 0-n Additional elements that are not part of the CPE

namespace. These contain additional information that

a user can choose to use or not, but this information

is not required to be used or understood.

 419

The rest of Section 5 provides additional information on the generator and cpe-item elements. 420

 421

5.2 The generator Element 422

The generator element contains information about the generation of the dictionary file. The properties of 423

the generator element are listed below. 424

 425

Property Type Count Description

product_name

(element)

xsd:string 0-1 The name of the application used to generate the file.

product_version

(element)

xsd:string 0-1 The version of the application used to generate the file.

schema_version

(element)

xsd:decimal 1 The version of the schema that the document was written

in and that should be used for validation.

timestamp

(element)

xsd:dateTime 1 When the file was generated.

 xsd:any 0-n Additional elements that are not part of the CPE

namespace. These contain additional information that a

user can choose to use or not, but this information is not

required to be used or understood.

 426

5.3 The cpe-item Element 427

The cpe-item element contains all of the information for a single dictionary entry (identifier name), 428

including metadata. The properties of the cpe-item element are defined below. Organizations can supply 429

additional information not covered by these properties, but such information is not part of the official 430

CPE dictionary data model. 431

 432

Property Type Count Description

name (attribute) cpe-name:cpe22Type 1 The identifier name bound in CPE 2.2

format.

deprecated

(attribute)

xsd:boolean 0-1 Whether or not the name has been

deprecated. Default value is false.

deprecated_by

(attribute)

cpe-name:cpe22Type 0-1 The name that deprecated this name, bound

in CPE 2.2 format.

deprecation_date

(attribute)

xsd:dateTime 0-1 When the name was deprecated.

title (element) cpe_dict:TextType 0-n Human readable title of the name. To support

uses intended for multiple languages, the title

element supports the xml:lang attribute. At

most one title element can appear for each

language.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 11

Property Type Count Description

notes (element) cpe_dict:NotesType 0-n Optional descriptive material. Only one notes

element should be used per language.

references

(element)

cpe_dict:ReferencesType 0-1 External references to additional descriptive

material. Each reference consists of a piece

of text (intended to be human-readable) and a

URI (intended to be a URL pointing to a real

resource).

check (element) cpe_dict:CheckType 0-n Calls out a check, such as an OVAL

definition, that can confirm or reject an IT

system as an instance of the named platform.

Includes a check system specification URI

(e.g., the URI for a particular version of

OVAL), a check identifier, and an optional

external file reference (for example, a pointer

to the file where the check is defined).

cpe23-item

(element)

cpe_dict_ext:itemType 1 Element that captures all CPE 2.3 specific

data including the CPE 2.3 formatted string

binding of the name, provenance data, and

deprecation data.

 xsd:any 0-n Additional elements that are not part of the

CPE namespace. These contain additional

information that a user can choose to use or

not, but this information is not required to be

used or understood.

 433

5.4 The cpe23-item Element 434

The cpe23-item element contains all CPE 2.3 specific data related to a given identifier name. 435

 436

Property Type Count Description

name (attribute) cpe_dict_ext:namePattern 1 The identifier name bound to a

formatted string [CPE23-

N:6.2].

provenance-record

(element)

cpe_dict_ext:provenanceRecordType 0-1 Container for all provenance

information for the given

identifier name.

deprecation

(element)

cpe_dict_ext:deprecationType 0-n Element holding one or more

deprecation entries for the

given identifier name. It is

possible for a single identifier

name to have multiple

deprecations that occur at

different time periods.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 12

Property Type Count Description

 xsd:any 0-n Additional elements that are not

part of the CPE namespace.

These contain additional

information that a user can

choose to use or not, but this

information is not required to

be used or understood.

 437

5.5 The provenance-record Element 438

The provenance-record element contains the provenance information for the given identifier name. 439

 440

Property Type Count Description

submitter (element) cpe_dict_ext:organizationType 1 The organization responsible

for submitting the identifier

name.

authority (element) cpe_dict_ext:organizationType 1-n The authority responsible for

endorsing the identifier name.

Multiple authorities may

endorse the same identifier

name.

change-description

(element)

cpe_dict_ext:changeDescriptionType 1-n A description of any changes

made to the identifier name or

associated metadata.

 xsd:any 0-n Additional elements that are not

part of the CPE namespace.

These contain additional

information that a user can

choose to use or not, but this

information is not required to

be used or understood.

 441

The submitter and authority elements have the same structure: 442

 443

Property Type Count Description

system-id

(attribute)

xsd:anyURI 1 Unique URI representing the organization.

name

(attribute)

xsd:token 1 Human readable name of the organization.

date

(attribute)

xsd:dateTime 1 The date the organization performed an action relative to an

identifier name. For example, the date the organization

submitted or endorsed a particular identifier name.

description

(element)

xsd:token 0-1 A high-level description of the organization acting as the

submitter or authority.

 444

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 13

The change-description element has the following structure: 445

 446

Property Type Count Description

change-type

(attribute)

cpe_dict_ext:changeTypeType 1 The type of change that

occurred. The possible values

are listed below the table.

date (attribute) xsd:dateTime 0-1 When the change occurred.

evidence-reference

(element)

cpe_dict_ext:evidenceReferenceType 0-1 Supporting evidence for any

change to a name or associated

metadata, including a link to

external information relating

to the change.

comments

(element)

xsd:token 0-1 Comments explaining the

rationale for the change.

 447

The possible values for the change-type attribute are: 448

 ORIGINAL_RECORD: Used when the name is first added to the dictionary. 449

 AUTHORITY_CHANGE: Used when the authority behind the name is modified. 450

 DEPRECATION: Used when the name is first deprecated. 451

 DEPRECATION_MODIFICATION: Used when additional deprecation entries are recorded for a 452

deprecated name. 453

 454

The evidence-reference element contains a URI, which references a specific piece of evidence, and an 455

evidence attribute, which has one of the following possible values: 456

 CURATOR_UPDATE: The curator of the dictionary discovered information that led to a change. 457

 VENDOR_FIX: The vendor of the product identified in the name released or submitted 458

information that led to a change. 459

 THIRD_PARTY_FIX: A third party released or submitted information that led to a change. 460

5.6 The deprecation Element 461

A deprecation element (from the cpe23-item element) contains the deprecation information for a specific 462

deprecation of a given identifier name. If a name is deprecated multiple times, there would be a separate 463

instance of the deprecation element for each deprecation. 464

 465

Property Type Count Description

date (attribute) xsd:dateTime 0-1 When the deprecation occurred.

deprecated-by

(element)

cpe_dict_ext:deprecatedInfoType 1-n The list of names that deprecated the

identifier name. The names in the list

do not have to be identifier names;

they may contain wildcards and

represent sets of products.

 466

The deprecated-by element has the following structure: 467

 468

Property Type Count Description

name

(attribute)

cpe_name:cpe23Type 0-1 The name that is deprecating the identifier

name.

type

(attribute)

cpe_dict_ext:deprecationTypeType 1 The type of deprecation.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 14

 469

The possible values for the type attribute are: 470

 NAME_CORRECTION: Deprecation is of type Identifier Name Correction 471

 NAME_REMOVAL: Deprecation is of type Identifier Name Removal 472

 ADDITIONAL_INFORMATION: Deprecation is of type Additional Information Discovery 473

5.7 Extension Points 474

Organizations may need to capture data not defined in the CPE Dictionary data model. Any organization 475

serving as a CPE dictionary creator or maintainer MAY extend the cpe23-item, cpe-list, and provenance-476

record elements to capture additional, organization specific data. If organizations extend these elements, 477

this extension MUST only occur by adding additional properties to these elements to capture different 478

types of data, or by restricting the values for specific properties. Organizations MUST NOT define rules 479

conflicting with the properties already defined for these elements. 480

 481

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 15

6. Dictionary Creation and Maintenance 482

This section provides information and requirements related to creating and maintaining CPE dictionaries. 483

It defines requirements for valid identifier names within dictionaries and explains the process to be 484

followed when an identifier name needs to be replaced or removed from a dictionary. This section also 485

briefly discusses requirements for capturing identifier name provenance data. Finally, this section 486

explains CPE dictionary management documents and provides related requirements. 487

6.1 Acceptance Criteria 488

A CPE dictionary holds a collection of identifier names that serve to identify classes of products. A 489

dictionary maintainer MUST only permit valid identifier names in the dictionary.
3
 An identifier name is 490

valid if it meets the acceptance criteria defined in the following sub-sections, which ensure a certain 491

degree of interoperability across all CPE dictionaries. The criteria focus on ensuring that each identifier 492

name within a CPE dictionary identifies a single product class. Dictionary maintainers MAY further 493

restrict the acceptance criteria defined in this section, but MUST NOT relax the criteria. The maintainers 494

of the Official CPE Dictionary SHOULD NOT further restrict the criteria since that would require all 495

extended dictionaries to implement the same restrictions. 496

6.1.1 Logical Values and Special Characters 497

The CPE Naming specification reserves a set of logical values and special characters for use within a CPE 498

attribute value [CPE23-N:5.3]. The CPE Dictionary specification permits a subset of these to be contained 499

within identifier names. 500

6.1.1.1 NA Logical Value 501

The NA value within a CPE attribute signifies that the attribute is Not Applicable. For example, a vendor 502

may distribute the first release of a product that contains no update, but later releases an update to this 503

first release in the form of a service pack. This example contains two distinct products, the first product 504

that contains no update, and the second product that does contain an update. The identifier name created 505

to represent the first release of the product should contain an update attribute with a value of NA (i.e., 506

update=NA) since the update attribute is known to be not applicable to the product. The identifier name 507

created to represent the second release of the product should contain an update attribute with a value of 508

sp1 (i.e., update=‖sp1‖). 509

Identifier names MUST NOT use the NA logical value as the part, vendor, or product attribute value, but 510

MAY use the NA logical value for any other CPE attributes’ values to indicate that the attributes are not 511

applicable. 512

6.1.1.2 ANY Logical Value 513

The use of the ANY logical value for a CPE attribute value signifies that there was not enough 514

information to populate the specific CPE attribute at the time of name creation. Identifier names MUST 515

NOT use the ANY logical value as the part, vendor, product, or version attribute value, but MAY use the 516

ANY logical value for any other CPE attributes’ values to indicate a lack of information. 517

3 Pseudocode that implements this rule is found in Section 8.2, in the function accept-name.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 16

It is common for the amount of information known about a product to grow over time. To support this, it 518

is necessary to evolve the identifier name itself by creating a new, more specific identifier name and 519

deprecating the old identifier name. Section 6.2 defines the formal deprecation process for tracking 520

changes to identifier names within a dictionary. 521

6.1.1.3 Special Characters 522

The CPE Naming specification reserves a set of special characters for use within a CPE attribute value 523

[CPE23-N:5.3.2]. The CPE Name Matching specification assigns specific meaning to a subset of these 524

special characters: the asterisk, which is a multi-character wildcard, and the question mark, which is a 525

single-character wildcard [CPE23-M:5]. This wildcard concept works well when creating expressions to 526

represent sets of product classes, but not for attempting to identify a single product class. Therefore, 527

identifier names MUST NOT contain any asterisk or question mark characters within attribute values 528

unless those characters are quoted. However, CPE dictionaries MAY contain these values within names 529

not serving as identifiers (e.g., within deprecation logic). CPE names containing these values are not valid 530

identifier names.
4
 531

6.1.2 CPE Name Completeness 532

Each identifier name MUST contain known data (e.g., not the ANY logical value) for the part, vendor, 533

product, and version attributes’ values. This ensures that each identifier name contains the minimum 534

amount of data required to identify a unique product class. The ANY logical value does not increase the 535

completeness of an identifier name; only known data can increase the identifier name completeness. 536

Known data refers to any value that represents a distinct aspect of a product (e.g. ―sp1‖, ―2.0‖, 537

―Microsoft‖, ―ios‖). For attributes other than the part, vendor, and product attributes, known data includes 538

the NA logical value since it represents the known fact that absolutely no data exists for a specific CPE 539

attribute. 540

6.1.3 CPE Name Uniqueness 541

Every identifier name MUST be unique in the sense that it MUST NOT encompass a more complete 542

identifier name within the dictionary. In terms of the set relations and algorithms in the CPE Name 543

Matching specification [CPE23-M:6], this means that the identifier name SHALL NOT be a SUPERSET 544

of any identifier name within the dictionary unless the two names are the same (EQUAL).
5
 Before adding 545

a new identifier name to a dictionary, the dictionary maintainer MUST use CPE name matching to 546

determine CPE uniqueness. If the dictionary is an extended dictionary, both the extended dictionary and 547

the Official CPE Dictionary MUST be checked. 548

The two scenarios that MUST be checked for are: 549

1. New name too general (the new name is a SUPERSET of the old name, but the new name is not 550

EQUAL to the old name). The creator of a new name may not have had the full set of 551

information required to populate all of its attributes with known data. CPE dictionaries support 552

this situation, but they MUST NOT include such a name if a more complete version of that name 553

exists in the dictionary. 554

4 Pseudocode that implements this rule is found in Section 8.2, in the function contains-restricted-characters.
5 In CPE Name Matching, the SUPERSET is non-proper, meaning that it includes cases where the two names are the same.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 17

2. Existing name too general (the new name is a SUBSET of the old name, but the new name is not 555

EQUAL to the old name). The new name may include information that was not available when 556

previous, more general names were created. For example, there may already be a similar 557

identifier name in the dictionary that contains the ANY logical value for fields that have known 558

data in the new name.
6
 In such a case the pre-existing name(s) SHALL be deprecated to the new, 559

more specific name; the deprecation process defined in Section 6.2 SHALL be followed for 560

performing this deprecation. 561

To provide an example (focusing on the CPE update attribute), suppose that a CPE dictionary contains the 562

following identifier name version of a CPE: 563

wfn:[part="a",vendor="foo_company",product="bar",version="2\.3", 564
update="sp1",edition=ANY,language=ANY,sw_edition=ANY,target_sw=ANY, 565
target_hw=ANY,other=ANY] 566

The above CPE represents the hypothetical product Foo Company Bar 2.3 sp1. At some later point in 567

time, a dictionary contributor submits the following identifier name version of a CPE for potential 568

inclusion within the same dictionary: 569

wfn:[part="a",vendor="foo_company",product="bar",version="2\.3", 570
update=ANY,edition=ANY,language=ANY,sw_edition=ANY,target_sw=ANY, 571
target_hw=ANY,other=ANY] 572

This new name represents the hypothetical product: Foo Company Bar 2.3. The difference with this new 573

name is that ―ANY‖ is the value for the update attribute. This means that the contributor of this name does 574

not know the correct value of the update field at the time of submission. The acceptance criteria defined 575

in this document does not permit this submission because an identifier name already exists that contains a 576

known value for the update field of the product. The reason for this restriction is that the less-complete 577

name does not represent any real-world product, but instead represents a set of existing identifier name 578

within the dictionary. If the dictionary contributor discovers a new update of the product, then the 579

contributor should submit an identifier name containing the new update value. 580

This does not mean that an identifier name representing the product Foo Company Bar 2.3 with no update 581

is not permitted (e.g., the first release of the product contained no update). The identifier name 582

representing the product with no update would contain the NA logical value in the update attribute. The 583

following CPE does meet the acceptance criteria since it represents a real-world product that is known to 584

have no update (i.e., the initial release of Bar 2.3): 585

wfn:[part="a",vendor="foo_company",product="bar",version="2\.3", 586
update=NA,edition=ANY,language=ANY,sw_edition=ANY,target_sw=ANY, 587
target_hw=ANY,other=ANY] 588

6.2 CPE Dictionary Deprecation Process 589

All identifier names stored within a dictionary MUST be immutable because data relating to a product is 590

captured in the identifier itself. An identifier name MUST NOT be modified because the loss of historical 591

information will cause problems for anyone already using that identifier name. Any updates to the product 592

data captured in the identifier name MUST occur through deprecation. For example, when a dictionary 593

6 Pseudocode that implements this rule is found in Section 8.2, in the function matches-more-complete-in-

dictionary.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 18

maintainer discovers more information about a product represented by an existing identifier in the 594

dictionary, they MUST deprecate the legacy identifier name in favor of a new identifier name or new set 595

of identifier names. A deprecated identifier name is no longer considered valid. 596

An important distinction exists between the set of names that deprecate an identifier name and the 597

identifier name that a CPE dictionary user selects as a replacement of the deprecated name. The CPE 598

dictionary may link a deprecated identifier name to a set of identifier names replacing it, but this is 599

asserting that any identifier name within the set of new identifier names is a valid replacement for the 600

deprecated identifier name. Using this information a CPE dictionary user may, depending on the use case, 601

decide on the appropriate name to use as a replacement, or decide to use the entire set. For example, when 602

resolving the deprecating entries for a deprecated name found within an applicability statement, an 603

organization may find it useful to use the entire set to avoid false negatives. 604

There are three types of identifier name deprecation: 605

 Identifier Name Correction – An error occurred during name creation. The error could range from a 606

simple syntax error (e.g., typo, misspelling) to an incorrect product listing. For example, a dictionary 607

maintainer may add a product to the dictionary, only to later discover that the product is only a 608

component library of a larger product. In this case, the dictionary maintainer would deprecate the 609

identifier name representing the component library to the identifier name representing the actual 610

product containing the component. This type of deprecation is one-to-one, with the deprecated name 611

pointing to the single identifier name that represents the correct product. 612

 Identifier Name Removal – An identifier name exists in the dictionary that does not belong and has 613

no replacement. This condition normally results from a case where the dictionary maintainer has 614

added a name to the dictionary that should never have been included in the dictionary. In this case, 615

the dictionary maintainer will deprecate the legacy name without pointing to a new name. 616

 Additional Information Discovery – The dictionary maintainer adds one or more identifier names to 617

the dictionary that are more complete than an existing identifier name. In this case, the pre-existing 618

name really represents a set of possible products that the maintainer did not know about when 619

originally adding the name to the dictionary. This type of deprecation may be one-to-many since the 620

dictionary maintainer will deprecate the pre-existing name to all of the names that are more complete. 621

This deprecation relationship is largely informational; when making this deprecation, the dictionary 622

maintainer is asserting that any identifier name within the set of new identifier names is a valid 623

replacement for the deprecated name. It is up to the user to decide on which individual name to use, 624

or to use the entire set. 625

When deprecating an identifier name, the dictionary maintainer MUST link the deprecated identifier 626

name to all identifier names that are replacing it through the deprecated-by relationship as defined in 627

Section 5.6. For example, if x is a single identifier name that is being deprecated and y is a set of 628

identifier names that is deprecating x, then "x deprecated-by y" defines a deprecation relationship 629

between x and y. 630

When a dictionary maintainer decides to deprecate an identifier name, the dictionary maintainer MUST 631

follow the below deprecation process. This process refers to the identifier name being deprecated as the 632

legacy name. 633

1. If the dictionary maintainer is replacing the legacy name with one or more new identifier names, 634

then the dictionary maintainer MUST add the new identifier names to the dictionary. 635

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 19

2. The dictionary maintainer MUST add a deprecation element to the legacy name dictionary entry 636

to signify that it is deprecated. If the legacy name was previously deprecated, then the dictionary 637

maintainer MUST add a new deprecation element to record the new deprecation.
7
 638

3. The dictionary maintainer MUST expand the new deprecation element to include one or more 639

deprecated-by elements to record the identifier name(s) replacing the legacy name. The dictionary 640

maintainer MUST specify the type of deprecation within the type attribute of each deprecated-by 641

element. Additionally: 642

a. If the dictionary maintainer is performing an Identifier Name Correction deprecation, then the 643

dictionary maintainer MUST populate the name attribute of the deprecated-by element with 644

the identifier name replacing the legacy name. 645

b. If the dictionary maintainer is performing an Additional Information Discovery deprecation, 646

then the dictionary maintainer MUST populate the name attribute of the deprecated-by 647

element with a name representing the set of new identifier names that are replacing the legacy 648

name. This name may contain wildcards (e.g., *, ?) to represent a set of identifier names. 649

4. The dictionary maintainer MUST record the change in the legacy name’s provenance 650

information. 651

6.3 CPE Dictionary Provenance Data 652

CPE dictionary maintainers MUST capture the required provenance data specified in Section 5.5. The 653

provenance data required includes data useful in understanding the reasoning behind changes made to 654

identifier names stored within a CPE Dictionary. This provenance data also captures the organization 655

responsible for identifier name submissions, as well as the authority behind the submissions. 656

6.4 CPE Dictionary Management Documents 657

Every CPE dictionary has a set of supporting management documentation associated with it. This 658

documentation improves the transparency relating to dictionary acceptance criteria, dictionary content 659

creation decisions and processes associated with the dictionary. Each CPE dictionary creator or 660

maintainer MUST create or reference a series of accompanying management documents capturing rules 661

and processes specific to its dictionary. A single dictionary creator or maintainer MAY establish multiple 662

extended CPE dictionaries. In these situations a single set of external CPE dictionary management 663

documents MAY be referenced as the authoritative documents for each extended dictionary. 664

This section defines each required CPE dictionary management document. 665

6.4.1 Dictionary Content Management and Decisions Document 666

Dictionary maintainers MUST either create or reference a Dictionary Content Management and Decisions 667

Document for each dictionary that they maintain. The document defines the procedures for identifier 668

name creation within a particular dictionary or set of dictionaries. All procedures defined in the decisions 669

document MUST NOT override or conflict with the requirements defined in this specification. The 670

decisions document MUST capture the following information: 671

7 Multiple deprecations may occur against a single identifier WFN at different times (e.g., it is discovered that more products

are included in the deprecated-by set). To support this, the CPE Dictionary data model requires that each deprecation

element within an identifier WFN record the deprecation for one instant in time.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 20

 672

1. Rules relating to dictionary-specific acceptance criteria for identifier names. 673

2. Identification strategies relating to different product types. Due to the heterogeneous nature of 674

product versioning in the IT industry, multiple disparate strategies for versioning products exist. 675

Where possible, the document should record the different identification strategies captured 676

within the dictionary. For example, if a specific product line uses seven digits within its version 677

syntax, then the document should record the semantics of each digit within this syntax. 678

3. Automated identifier name creation strategies for specific products. These strategies may include 679

the API calls or functions to call on certain products to populate specific attributes of an 680

identifier name. 681

4. Lists of valid values for specific CPE attributes where appropriate. Valid value lists either may 682

be global or pertain to specific CPEs. For example, it is possible to have a granular valid value 683

list for the version attribute of a specific vendor and product, without extending the scope of this 684

valid values list to every CPE version attribute within the dictionary. 685

5. Abbreviation rules for data within specific CPE attributes where appropriate. Abbreviation rules 686

may either be global or pertain to specific CPEs. 687

6. Rules relating to any dictionary-specific provenance data that the dictionary records. 688

6.4.2 Dictionary Process Management Document 689

Dictionary maintainers MUST either create or reference a Dictionary Process Management Document for 690

each dictionary that they maintain. The document defines all processes associated with a particular 691

dictionary or set of dictionaries. All processes defined in the document MUST NOT override or conflict 692

with the requirements defined in this specification. The process management document MUST capture 693

the following information: 694

1. The scope of the dictionary. 695

2. The target audience of the dictionary. 696

3. The submission process that users must follow to submit new CPE identifiers for inclusion within 697

the dictionary. At a minimum, this overview SHOULD include the submission format, the 698

process for starting the submission process, and the workflow surrounding the submission 699

process. 700

4. The content decisions process that the community follows to create the content decision rules that 701

are captured in the Dictionary Content Management and Decisions Document. 702

5. The CPE Identifier modification process followed by dictionary maintainers. 703

6. The dictionary distribution process and methodology. At a minimum, this SHOULD define the 704

binding in which the dictionary is distributed. 705

 706

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 21

7. Dictionary Use 707

This section defines two common ways of using a CPE Dictionary. The first involves looking up a single 708

identifier name within a dictionary. The second involves using a name representing a set of products to 709

search against the dictionary to determine what identifier names within the dictionary are members of that 710

set. The two methods of searching are necessary to support the type of information a user is retrieving 711

from a dictionary. In some cases, it is necessary to retrieve an exact match from the dictionary; for 712

example, when resolving a deprecation chain based on ―Identifier Name Correction‖ deprecation, it is 713

necessary to resolve only the exact identifier name listed in the deprecation metadata. In other cases, it is 714

necessary to search for an entire set of CPE names; for example, when resolving a deprecation chain 715

based on ―Additional Information Discovery‖ deprecation, it is necessary to resolve all identifier names 716

captured in the deprecation metadata. 717

 718

The section also explains how identifier names should be resolved from a deprecated name. All of these 719

operations leverage the CPE name matching algorithms
8
 when performing the search operations. 720

7.1 Identifier Lookup 721

Identifier lookup involves using the WFN corresponding to a single identifier name (i.e., the source 722

identifier name) to iterate through each entry in a dictionary to see if that source identifier exists within 723

the dictionary—if any identifier name in the dictionary is equal to the source identifier name. Equality 724

means that the corresponding attribute values in the two identifier names are all equal. The CPE_EQUAL 725

function defined in the CPE Name Matching specification [CPE23-M:7.2] presents a formal 726

implementation of this equality test. The two possible outcomes of an identifier lookup are: 727

 Match – The source identifier name matches an identifier name within the dictionary. The 728

operation returns the status ―EXACT-MATCH‖ and the WFN of the dictionary identifier name 729

that matched. Note that since each name within the dictionary MUST be unique, at most only one 730

identifier name could match the source identifier name. 731

 No Match – The source identifier name does not match any identifier name within the dictionary. 732

The operation returns a null value. 733

 734

Section 8.3 defines the formal implementation of this identifier lookup operation in pseudocode. 735

7.2 Dictionary Searching 736

Dictionary searching involves using a source name representing a set of products to search against a 737

dictionary to determine which identifier names within the dictionary are members of that set. A dictionary 738

searching routine would iterate through each entry in the dictionary to identify all that are a member of 739

the set represented by the source name. Possible outcomes of this searching operation are: 740

 Superset Match – One or more identifier names from the dictionary belong to the set represented 741

by the source name. In set theory language, the set represented by the source name is a superset of 742

the matched identifier names from the dictionary. The operation returns ―SUPERSET-MATCH‖ 743

and the set of matching dictionary identifier names expressed as WFNs. 744

 Subset Match – The set represented by the source name is a possible subset of one or more 745

identifier names within the dictionary. This will only occur if the source name is more specific 746

8 The CPE Name Matching specification [CPE23-M] formally defines the CPE name matching algorithms used in this

section, and in accompanying pseudocode implementations in Section 8.3.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 22

than one or more names within the dictionary. Generally this result should be treated as an error; 747

the searcher may want to notify the dictionary maintainer that a name in the wild is more specific 748

than one or more identifier names within the dictionary. The operation returns ―SUBSET-749

MATCH‖ and the set of matching dictionary identifier names expressed as WFNs. 750

 No Match – There is no relationship between the set represented by the source name and the 751

identifier names within the dictionary. The source name is disjoint with the dictionary. When no 752

match is found, the operation returns a null value. 753

 754

Section 8.3 defines the formal implementation of this dictionary search operation in pseudocode. This 755

pseudocode leverages the CPE_SUPERSET and CPE_SUBSET functions defined in the CPE Name 756

Matching specification [CPE23-M:7.2] to implement the search operation. 757

7.3 Use of Deprecated Identifier Names 758

The concept of deprecated identifier names is explained in Section 6.2. CPE dictionary users MUST NOT 759

use a deprecated identifier name, but MUST instead use an identifier name that is linked to the deprecated 760

identifier name through the deprecated-by relationship.
9
 It is important to understand that even though a 761

set of names may deprecate one identifier name, an organization does not have to use all of these new 762

names. The organization MAY simply pick a non-deprecated name out of the set, or the organization 763

MAY choose to use the entire set. 764

When a product consumes or outputs an identifier name, that product MUST first determine if the 765

identifier name is deprecated in the Official CPE Dictionary. If the identifier name is not present in the 766

Official CPE Dictionary, then the product MUST determine if the identifier name is deprecated in an 767

extended CPE dictionary to which it has access. If the identifier name is deprecated, the product MUST 768

resolve the correct non-deprecated identifier names for use in place of the deprecated identifier name. The 769

product MUST use the following process, which references the dictionary-search function 770

defined in Section 8.3, to perform this resolution. 771

1. If the deprecated identifier name does not reference any identifier names within the deprecated-772

by element, then the organization MUST choose a new non-deprecated identifier name from the 773

dictionary. This situation will occur if the deprecation is of type ―Identifier Name Removal‖. 774

2. If the deprecated identifier name provides an identifier name within the deprecated-by element, 775

and: 776

a. If the deprecation type is ―Identifier Name Correction‖, then the organization MUST resolve 777

the dictionary entry containing the identifier name listed. The organization MUST resolve 778

this identifier name using the dictionary-search function, passing the identifier name, 779

the dictionary, and a value of true as the parameters to the function; these arguments will 780

result in an identifier lookup operation. 781

b. If the deprecation type is ―Additional Information Discovery‖ then the organization MUST 782

resolve the set of dictionary entries containing the identifier names. The organization MUST 783

resolve this set of identifier names using the dictionary-search function, passing the 784

set of identifier names, the dictionary, and a value of false as the parameters to the function; 785

these arguments will result in a dictionary search operation. 786

9 This requirement MAY be ignored when dictionary users are purposefully intending to communicate information relating to

deprecated WFNs.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 23

3. If there are multiple deprecation elements or a single deprecation element with multiple 787

deprecated-by elements, then the organization MUST iterate through step 2 for all deprecated-by 788

elements provided. The organization MUST take the union of all resolved sets of identifier 789

names; this union is the correct set of identifier names that have replaced the legacy name. 790

4. The organization MAY encounter deprecated identifier names in the set of identifier names 791

resolved in Step 2. In this case, the organization MUST follow the above process to replace these 792

deprecated names with the set of names that deprecated it; this process may be recursive. 793

5. The final set of resolved names represents all names that replace the legacy name. Organizations 794

MAY either use all of these names, or pick one name out of the set to use in place of the legacy 795

name. 796

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 24

8. CPE Dictionary Operations and Pseudocode 797

This section specifies functions for basic CPE dictionary operations and provides pseudocode for the 798

identifier name acceptance criteria and the dictionary searching operations. 799

8.1 Operations on a CPE Dictionary 800

This section defines a set of functions for performing common activities against a CPE Dictionary. These 801

functions are relatively simple and do not require a pseudocode implementation, but the remaining sub-802

sections present pseudocode that may utilize these common functions. 803

8.1.1 Function get_cpe_items(d) 804

The get_cpe_items(d) function takes a single CPE Dictionary, d, and returns all cpe-items 805

associated with it. A single cpe-item within the dictionary represents the identifier name and all 806

associated metadata. 807

8.1.2 Function get_cpe_item_WFN(item) 808

The get_cpe_item_WFN(item)function takes a single cpe-item element and returns the 809

identifier WFN that it represents. Because the dictionary holds bound representations of names, it is 810

necessary to unbind one of those to obtain a WFN. The formatted string binding should be used if 811

available, and it can be unbound using the unbind_fs(fs) function defined in the CPE Naming 812

Specification [CPE23-N:6.2.3]. 813

8.1.3 Function get(w,a) 814

The get(w,a) function takes two arguments, a WFN w and an attribute a, and returns the value of a. If 815

the attribute a is unspecified in w, the function returns the default value ANY. This function is defined in 816

the CPE Naming Specification [CPE23-N:5.4.2]. 817

8.1.4 Function is_deprecated(item) 818

The is_deprecated(item) function takes a single cpe-item and returns true if the cpe-item 819

is deprecated, false if the cpe-item is not deprecated. 820

8.1.5 Function getItem(list, index) 821

The getItem(list, index)function is a helper function for retrieving an item in a list. The 822

function will return the list item at the position specified by index. This function assumes a 0-based 823

index and will return null if no items exist at the provided index. 824

8.1.6 Function strlen(s) 825

The strlen(s)function returns the length of string s. If the string is empty, it returns zero. It is defined 826

as in GNU C. 827

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 25

8.1.7 Function substr(s,b,e) 828

The substr(s,b,e)function returns a substring of string s, beginning with the character at location b 829

(with zero being the first character) and ending with the character at location e. If b equals e, it returns 830

the character at location b. b must be less than or equal to e. If b is equal to or greater than strlen(s), 831

it returns nil. 832

8.2 Acceptance Criteria Pseudocode 833

This section defines the algorithm required to implement the acceptance criteria defined in Section 6.1. 834

The core algorithm is implemented in the below pseudocode function named accept-name, which 835

processes a given formatted string binding, fs, converts it to its WFN representation, w, and compares 836

the WFN against a specific dictionary to determine if the dictionary should accept the new name. The 837

following list provides a brief summary of the algorithm implemented in the accept-name function: 838

1. Unbind the formatted string fs to its WFN representation w because all the other functions within 839

accept-name require a WFN as input. See the unbind_fs function in the CPE Naming 840

Specification [CPE23-N:6.2.3]. 841

2. Use the helper function contains-restricted-characters to determine if the WFN w 842

contains any of the restricted characters defined in Section 6.1.1.3. If w contains any of the 843

restricted characters, accept-name will return false. 844

3. Use the helper function contains-required-attributes to determine if the WFN w 845

contains known data for all of the required attributes specified in Section 6.1.2. If w does not 846

contain all of the required attributes, accept-name will return false. 847

4. Use the helper function matches-more-complete-in-dictionary to determine if the 848

WFN w is unique within the dictionary d, as specified in Section 6.1.3. If w does not adhere to 849

this rule, or in other words if w matches against a more complete name in the given dictionary d, 850

then accept-name will return false. This function uses the dictionary-search function 851

defined in Section 8.3 for matching against the dictionary. 852

 853
1 function accept-name(fs, d) 854

2 ;; Top-level function to determine if the formatted string fs 855
3 ;; should be accepted into dictionary d based on high-level 856
4 ;; acceptance criteria. Assumes that the fs and its WFN 857
5 ;; representation meet acceptance criteria defined in the 858
6 ;; CPE Naming Spec. 859
7 w =: unbind_fs(fs). 860
8 if contains-restricted-characters(w) 861
9 then return false. 862
10 endif. 863
11 if !contains-required-attributes(w) 864
12 then return false. 865
13 endif. 866
14 if matches-more-complete-in-dictionary(w, d) 867
15 then return false. 868

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 26

16 endif. 869
17 return true. 870
18 end. 871

Figure 8-1: accept-name function 872

 873
1 function contains-restricted-characters(w) 874

2 ;; Helper-function to determine if WFN w contains characters 875
3 ;; not permitted in dictionary. 876
4 ;; loop through every attribute in WFN 877
5 foreach a in {part,vendor,product,version,update,edition,language, 878
6 sw_edition,target_sw,target_hw,other} do 879

7 s := get(w,a). ;; get value of attribute 880
8 if (s = ANY or s = NA) 881

9 ;; the attribute value is a logical 882
10 then continue. ; to next attribute 883
11 endif. 884

12 ;; If we get here, s is a string value. 885
13 n := 0. 886
14 loop 887
15 if n >= strlen(s) 888
16 then break. ;; break to outer loop 889
17 endif. 890

18 c := substr(s,n,n). ;; get the n’th character of s. 891
19 if (c = "*" or c = "?") 892
20 then 893
21 if ((n = 0) or (substr(s,n-1,n-1) != "\")) 894
22 then return true. ;; unquoted '*' or '?' not permitted 895
23 endif. 896
24 else 897
25 ;; character is legal, move on 898

26 n := n + 1. 899
27 continue. 900
28 endif. 901
29 endloop. 902
30 endfor. 903
31 return false. 904
32 end. 905

 Figure 8-2: contains-restricted-characters function 906

 907
1 function contains-required-attributes(w) 908

2 ;; Helper-function to determine if required attributes contain 909
3 ;; known data. WFN syntax defined in CPE Naming Spec ensures all 910
4 ;; attributes contain at least some data. 911
5 foreach a in {part, vendor, product, version} do 912

6 s := get(w,a). ;; get string value of attribute 913
7 ;; only loop through required attributes of w 914
8 if s = ANY 915
9 then return false. 916
10 endif. 917

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 27

11 if (a != version and s = NA) 918
12 then return false. ;; NA only permitted in version 919
13 endif. 920
14 endfor. 921
15 return true. 922
16 end. 923

Figure 8-3: contains-required-attributes function 924

 925
1 function matches-more-complete-in-dictionary(w, d) 926

2 ;; Helper-function to determine if identifier WFN w matches a 927
3 ;; more complete name in the dictionary d (i.e. a superset match). 928
4 matches := dictionary-search(w, d, false). 929
5 if (size(matches) > 0) 930
6 then 931
7 if (getItem(matches, 0) = "SUPERSET-MATCH") 932
8 then return false. ;; at least one superset match was found 933
9 endif. 934
10 endif. 935
11 return true. ;; no match, or subset match are both okay. 936
12 end. 937

Figure 8-4: matches-more-complete-in-dictionary function 938

8.3 Dictionary Use Pseudocode 939

This section contains pseudocode that implements the identifier lookup and dictionary search operations 940

defined in Section 7 with the dictionary-search function.
10

 This function is focused on returning 941

all non-deprecated names within a dictionary, but will not filter out deprecated names from the result set, 942

allowing the caller to filter the names based on use case. While this function will not filter out deprecated 943

names, it does not guarantee that it will return all matching deprecated names in the result set; it only 944

guarantees the return of all matching non-deprecated names. When not looking for exact matches, the 945

function will look for all superset matches within the given dictionary. The function will only look for 946

subset matches if the given dictionary contains no superset matches. This ordering derives from the CPE 947

Dictionary acceptance criteria that will not allow a dictionary to contain non-deprecated subset matches if 948

a superset match is present.
11

 949

Table 8-1 provides a detailed overview of the dictionary-search function. This pseudocode 950

leverages the accessor functions defined in Section 8.1. The code also leverages the CPE_EQUAL, 951

CPE_SUBSET, and CPE_SUPERSET functions defined in the CPE Name Matching specification 952

[CPE23-M:7.2]. 953

 954

10 This function does not account for deprecation chains. For example, if an identifier WFN is found that is deprecated, a tool

may want to recursively search all the identifier WFNs in the deprecation chain (i.e., the set of all identifier WFNs

referenced by the deprecated-by property).
11 The dictionary-search function was designed for readability; more efficient methods for implementing this logic

exist.

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 28

Table 8-1: Description of dictionary-search function 955
Line

Number(s)
Description

1 The function accepts three arguments, the source WFN, the dictionary to search against, and a boolean

flag 'exact'. When 'exact' is true the function will perform an identifier lookup based on the source

WFN. When 'exact' is false the function will perform dictionary searching for all names contained the

source WFN set.

11 Creates a list to store all discovered matches as well as the match type; if a match is found, then the

first position of this list will contain the match type and the second position will contain the matches

(either single match, or set of matches).

12 -13 If 'exact' is true, the function will enter into logic to determine if an exact match is present within d.

The function will then call the findExactMatch function (defined in Figure 8-8) to determine if an

exact match exists in the dictionary.

14-20 If an exact match is found, the function will populate the 'response' list with the response type of

'EXACT-MATCH' and then append the exact match to the next position in the list. The function will

then return the response list, or null if no match was found.

22 The function will call the findSupersetMatches function (defined in Figure 8-6) to build the set of all

superset matches found in d.

23-28 If any superset matches are found, the function will populate the 'response' list with the response type

of 'SUPERSET-MATCH' and then append the set of matches to the next position in the list. The

function will then return the response list.

29 The function will call the findSubsetMatches function (defined in Figure 8-7) to build the set of all

subset matches found in d. NOTE: No non-deprecated subset matches should be present if a superset

match was found.

30-35 If any subset matches are found, the function will populate the 'response' list with the response type of

'SUBSET-MATCH' and then append the set of matches to the next position in the list. The function

will then return the response list.

36 If no matches were found the function will return null.

 956

 957
1 function dictionary-search(source, d, exact) 958

2 ;; For a given source WFN, source, the function will determine 959
3 ;; how it relates to the given dictionary, d. If the source WFN 960
4 ;; is a superset match to one or more identifier WFNs in d, then 961
5 ;; the function will return that set of names. If the source name 962
6 ;; is not a superset of any dictionary names, but is a subset of a 963
7 ;; dictionary name(s), then the function will return the set of 964
8 ;; dictionary names of which it is a subset. If an exact match is 965
9 ;; found and exact is true, the function will return the exact 966
10 ;; match. If no match exists the function will return null. 967
11 response := new List(). 968
12 if (exact = true) 969

13 match := findExactMatch(source, d). 970
14 if (match != null) 971
15 then 972

16 response := append(response, "EXACT-MATCH"). 973
17 response := append(response, match). 974
18 return response. 975
19 else return null. 976
20 endif. 977
21 endif. 978
22 supersetMatches := findSupersetMatches(source, d). 979
23 if (size(supersetMatches) > 0) 980

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 29

24 then ;;superset matches found 981

25 response := append(response, "SUPERSET-MATCH"). 982
26 response := append(response, supersetMatches). 983
27 return response. 984
28 endif. 985

29 subsetMatches := findSubsetMatches(source, d). 986
30 if (size(subsetMatches) > 0) 987
31 then ;; subset matches found 988

32 response := append(response, "SUBSET-MATCH"). 989
33 response := append(response, subsetMatches). 990
34 return response. 991
35 endif. 992
36 return null. 993
37 end 994

Figure 8-5: dictionary-search function 995

Table 8-2: Description of findSupersetMatches function 996
Line

Number(s)
Description

4 Creates a set to store all discovered superset matches.

5 Starts looping over every cpe-item in given dictionary, d.

7 Retrieves the WFN represented by the current item from the dictionary.

8-12 Passes the source and dictionary WFN to the CPE_SUPERSET and CPE_EQUAL functions

(defined in the CPE Name Matching specification [CPE23-M:7.2] to determine how the two

names relate. If the source is a 'superset' of the dictionary name, but not equal to the

dictionary name, then the function will append the item to the set of matches.

14 The function will return the set of matches.

 997

 998
1 function findSupersetMatches(source, d) 999

2 ;; For a given source WFN, source, the function will find all 1000
3 ;; superset matches contained within the given CPE dictionary, d. 1001
4 matches := new Set(). 1002
5 foreach item in get_cpe_items(d) 1003
6 do 1004

7 dictionaryName := get_cpe_item_WFN(item). ;;WFN from cpe-item 1005
8 if ((CPE_SUPERSET(source, dictionaryName) = true) and 1006

9 (CPE_EQUAL(source, dictionaryName) = false)) 1007
10 then 1008

11 matches := append(matches, item). 1009
12 endif. 1010
13 endfor. 1011
14 return matches. 1012
15 end 1013

Figure 8-6: findSupersetMatches function 1014

 1015

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 30

Table 8-3: Description of findSubsetMatches function 1016
Line

Number(s)
Description

4 Creates a set to store all discovered subset matches.

5 Starts looping over every cpe-item in given dictionary, d.

7 Retrieves the WFN represented by the current item from the dictionary.

8-12 Passes the source and dictionary WFN to the CPE_SUBSET and CPE_EQUAL functions

(defined in the CPE Name Matching specification [CPE23-M:7.2] to determine how the two

names relate. If the source is a 'subset' of the dictionary name, but not equal to the dictionary

name, then the function will append the item to the set of matches.

14 The function will return the set of matches

 1017
1 function findSubsetMatches(source, d) 1018

2 ;; For a given source WFN, source, the function will find all 1019
3 ;; subset matches contained within the given CPE dictionary, d. 1020
4 matches := new Set(). 1021
5 foreach item in get_cpe_items(d) 1022
6 do 1023

7 dictionaryName := get_cpe_item_WFN(item). ;;WFN from cpe-item 1024
8 if ((CPE_SUBSET(source, dictionaryName) = true) and 1025

9 (CPE_EQUAL(source, dictionaryName) = false)) 1026
10 then 1027

11 matches := append(matches, item). 1028
12 endif. 1029
13 endfor. 1030
14 return matches. 1031
15 end 1032

Figure 8-7: findSubsetMatches function 1033

Table 8-4: Description of findExactMatch function 1034
Line

Number(s)
Description

4 Starts looping over every cpe-item in given dictionary, d.

6 Retrieves the WFN represented by the current item from the dictionary.

7-10 Passes the source and dictionary WFN to the CPE_EQUAL function (defined in the CPE

Name Matching specification [CPE23-M:7.2] to determine how the two names relate. If the

two names are equal then the function will return the item as the exact match.

12 If not exact matches were found the function will return null.

 1035

 1036
1 function findExactMatch(source, d) 1037

2 ;; For a given source WFN, source, the function will find the 1038
3 ;; exact match contained within the given CPE dictionary, d. 1039
4 foreach item in get_cpe_items(d) 1040
5 do 1041

6 dictionaryName := get_cpe_item_WFN(item). ;;WFN from cpe-item 1042
7 if (CPE_EQUAL(source, dictionaryName) = true) 1043
8 then 1044

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

 31

9 return item. 1045
10 endif. 1046
11 endfor. 1047
12 return null. 1048
13 end 1049

Figure 8-8: findExactMatch function 1050

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

32

Appendix A—References 1051

The following documents are indispensible references for understanding the application of this 1052

specification. 1053

 1054

Normative References 1055
 1056

[CPE22] Buttner, A. and N. Ziring, Common Platform Enumeration (CPE)—Specification, Version 2.2, 1057

March 11, 2009. See http://cpe.mitre.org/specification/archive/version2.2/cpe-specification_2.2.pdf. 1058

 1059

[CPE23-M] Parmelee, M., Booth, H., Waltermire, D., and Scarfone, K., NIST Interagency Report 7696, 1060

Common Platform Enumeration: Name Matching Specification Version 2.3 (Draft), April 2011. See 1061

http://csrc.nist.gov/publications/PubsDrafts.html. 1062

 1063

[CPE23-N] Cheikes, B., Waltermire, D., and Scarfone, K., NIST Interagency Report 7695, Common 1064

Platform Enumeration: Naming Specification Version 2.3 (Draft), April 2011. See 1065

http://csrc.nist.gov/publications/PubsDrafts.html. 1066

 1067

Informative References 1068
 1069

[SP800-117] Quinn, S., Scarfone, K., Barrett, M., and Johnson, C., NIST Special Publication 800-117, 1070

Guide to Adopting and Using the Security Content Automation Protocol, July 2010. See: 1071

http://csrc.nist.gov/publications/nistpubs/800-117/sp800-117.pdf. 1072

 1073

[SP800-126] Waltermire, D., Quinn, S., and Scarfone, K., NIST Special Publication 800-126 Revision 1, 1074

The Technical Specification for the Security Content Automation Protocol (SCAP): SCAP Version 1.1, 1075

February 2011. See http://csrc.nist.gov/publications/nistpubs/800-126-rev1/SP800-126r1.pdf. 1076

 1077

http://cpe.mitre.org/specification/archive/version2.2/cpe-specification_2.2.pdf
http://csrc.nist.gov/publications/PubsDrafts.html
http://csrc.nist.gov/publications/PubsDrafts.html
http://csrc.nist.gov/publications/nistpubs/800-117/sp800-117.pdf
http://csrc.nist.gov/publications/nistpubs/800-126-rev1/SP800-126r1.pdf

COMMON PLATFORM ENUMERATION (CPE): DICTIONARY SPECIFICATION VERSION 2.3 (DRAFT)

33

Appendix B—Change Log 1078

Release 0 – 9 June 2010 1079

 Complete draft specification released to the CPE community for comment. 1080

 1081

Release 1 – 30 June 2010 1082

 Minor edits to audience description. 1083

 Minor editorial changes throughout the document. 1084

 Removed all mention of and support for the logical value UNKNOWN. 1085

 Updated Dictionary Searching section to remove the notion of an Error result, and clarify on 1086

superset versus subset matches. 1087

 Updated deprecation logic, and data model to include three distinct types of deprecation. 1088

 1089

Release 2 – 2 June 2011 1090

 Reorganized the sequence of several sections and sub-sections. 1091

 Minor editorial changes throughout the document. 1092

 Reorganized the data model discuss to include all elements and attributes available in version 2.3. 1093

 Changed the overarching term ―Dictionary Searching‖ to ―Dictionary Use‖ to distinguish it from 1094

the lower-level term ―dictionary searching‖. 1095

 Clarified what results are returned by identifier lookups and dictionary searching. 1096

 Made several minor changes to the version 2.3 schema/data model, including making several 1097

elements and attributes optional and changing a few types. 1098

 1099

